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PURPOSE OF THE STSM 
  
The overall goal of this Short Term Scientific Mission (STSM) was to model the effects of climate change on 
threatened forest plant species using SDMs. We recently developed gridded microclimatic temperature 
products at 25 m resolution across Europe (Haesen et al., 2021), which – for the first time – enable us to 
more accurately model the effects of climate change on the distribution of near-surface forest plant species. 
Within this STSM, we layed the foundation of (i) using SDMs to identify red-listed forest plant species that 
could potentially lose all of their habitat with suitable climatic conditions within certain European countries 
and (ii) evaluate the potential of microclimates to mitigate species loss and extinctions of threatened forest 
plant species induced by climate change. Furthermore, the results of this STSM can be used by policy 
makers and conservation managers in order to align regional and national nature conservation policy and 
practices with the problem of climate change. 
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DESCRIPTION OF WORK CARRIED OUT DURING THE STSMS 
 
With this STSM, I further developed my skills within this field of ecological modelling. Due to the state-of-the-
art knowledge offered by dr. Jonathan Lenoir, I am now able to build state-of-the-art SDMs. We considered 
Actaea spicata as our species of interest for this STSM, as it is listed as an endangered species within the 
Red List for Flanders. Upon return to the home institution, SDMs can be performed for additional red-listed 
species. 
 
We opted to build species distribution models based on presence-only data in order to increase the amount 
of occurrence points (i.e. presence-absence data is less available). Therefore, we queried GBIF (Global 
Biodiversity Information Facility), which contains well sampled information over a large spatial area. We 
opted to use the MaxEnt (Maximum Entropy) algorithm, which is the most commonly used tool for species 
distribution modeling based on presence-only data (Merow, Smith, & Silander, 2013). These SDMs combine 
species’ presence-only data with our macroclimatic/microclimatic predictor data to model the environmental 
suitability for Actaea spicata. Background data were generated by sampling equal amount of background 
point as occurrence points with a spatial density of the background points proportional to the spatial density 
of occurrence points. This approach has recently been suggested (Lake, Briscoe Runquist & Moeller, 2020; 
Vollering, Halvorsen, Auestad & Rydgren, 2019) and accounts for remaining spatial bias in the occurrence 
records (after thinning). To deal with common issues in SDMs, including spatial bias and bad model 
performance, we implemented MaxEnt in the R package ENMeval (Kass et al., 2021; Muscarella et al., 
2014). Spatial autocorrelation issues are handled in ENMeval by using block cross-validation to validate the 
models (Roberts et al., 2017), which is certainly necessary as the SDMs are built upon spatially structured 
occurrence data. Model performance can be improved by tuning the model settings (e.g. feature classes = 
“Linear”, “Product” and “Quadratic” and regularization multipliers = “0.5”, “1”, “2”, “3”, “4” and “5”) in ENMeval 
rather than working with the default settings. Model performance was evaluated using the Continuous Boyce 
Index (CBI) rather than the commonly used AUC as it has recently been shown that the latter is subjected 
to bias in presence-only models (Jiménez-Valverde, 2012; Jiménez & Soberón, 2020). The CBI represents 
the correlation between predicted habitat suitability and the distribution of occurrence records (Hirzel, Le 
Lay, Helfer, Randin & Guisan, 2006) and ranges between -1 and 1, where values > 0 denote that the model 
is better than random. Finally, we calculated sensitivity for the model on an independent 20% dataset in 
order to quantify how good our model is able to distinguish between true positives and false negatives. 
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DESCRIPTION OF THE MAIN RESULTS OBTAINED 
 
We found that our models for Actaea spicata performed well (CBI > 0.7) and that sensitivity was high (> 
90%) under both macroclimatic and microclimatic conditions. Visually we can observe clear differences in 
the potential range of Actaea spicata (Figure 1). 
  
 

 
Figure 1: Binary maps for the potential range distribution of Actaea spicata at a spatial resolution of 4 km x 4 km. These 
maps indicate where the macroclimatic conditions (left) and microclimatic conditions (right) are suitable (green) or 
unsuitable (gray) for the species. Binary maps were constructed using the 10th percentile training presence as a 
threshold. 

We also found differences in the optimal temperature for Actaea spicate, being 8.7°C under macroclimatic 
conditions and 7.1°C under microclimatic conditions. Furthermore, maximum thermal tolerance (95th 
percentile; macro = 11.7 °C; micro = 11.2 °C) and minimum thermal tolerance (5th percentile; macro = 3.9 
°C; micro = 2.4 °C) differed under both conditions (Figure 2). 
 

 
 

Figure 2: Thermal response curves for Actaea spicata under macroclimatic conditions (red) and microclimatic conditions 
(blue), which were derived based on the binary maps presented in Figure 1. 
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FUTURE COLLABORATIONS (if applicable) 
  
This STSM has certainly strengthened the bonds between our two labs and further collaborations are 
inevitable. Certainly due to the great overlap in research interests (i.e. microclimate, species distribution 
modelling…) future combined endeavors are already planned within the upcoming chapters of my PhD. 
Finally, also interactions are possible within the framework of the PhD from Eva Gril, who works around 
modelling species distributions at a smaller extent but higher spatial resolution. 
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